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Abstract A new family of alignment-free 3D descriptors based on TOMOCOMD-
CARDD framework has been designed, namely 3D-linear indices. In this report, we
have proposed the use of a generalized form of the geometric pairwise atom-atom
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distance matrix as structural information matrix. This matrix, denominated as non-
stochastic, uses asmatrix formof linearmaps aswell as their algebraic transformations:
stochastic, double stochastic and mutual probabilities matrices. The methodology for
3D-QSAR studies is based on the combined use of global and local approaches.
Principal component analysis reveals that the novel indices are capable of capturing
structural information not codified by the indices implemented in theDRAGON’s soft-
ware.Moreover, Shannon’s entropy based variability analysis comparing the 3D-linear
indiceswith some relevant descriptors suggests that the former encode similar-to-better
amount of structural information than these descriptors. Finally, a search for the best
regressions for congeneric databases in QSPR modeling was performed. The overall
results demonstrates satisfactory behavior.

Keywords TOMOCOMD-CARDD · 3D-linear index · Variability analysis ·
QSPR study

1 Introduction

The pharmaceutical industry needs to address the increasing cost and time for drug
development [1,2], and in silico lead identification and optimization (twomain steps in
the new lead discovery) are increasingly becoming important means of tackling these
challenges [3,4]. This drug discovery pipeline often involves quantitative structure-
activity relationships (QSARs) [5–7], which focus on deriving correlations between
the properties/molecular descriptors and their pharmacological activities and ADME-
TOX endpoints. These methods can be broadly categorized as two-dimensional (2D)
or three-dimensional (3D) QSARs. The 2D-QSAR methods commonly use chemical
information derived from constitutional and topological information of molecules, fin-
gerprints, and traditional physicochemical properties (0D–2D molecular descriptors)
[8]. The 3D-QSAR methods consider the physicochemical properties of the ligands
in their hypothesized bioactive conformations [5–7].

At present, many outstanding QSAR methods based on 2D properties of the mole-
cule have a comparable to better quality than the 3Dmethods [9–13]. Although 0D–2D
molecular descriptors (MDs) are routinely applied in endpoint predictions, many prop-
erties have been shown to require more detailed 3D information to properly capture
the relevant structural features responsible for the description or modeling of end-
points of interest [14–22]. It has become evident that physical, chemical, or biological
properties of a compound depend on the three-dimensional (3D) arrangements of the
atoms in the molecule. Hence, 3D MDs seem to be indispensable for a reliable struc-
tural characterization and adequate model generation. For that reason, in recent years,
the QSAR methods based on the 3D structures of the molecules, such as CoMFA
[23], GRID [24], COMPASS [25], and GERM [26], have been widely used in several
scientific fields.

However, the CoMFA-like (field-based approaches) methods suffer from a number
of limitations such as: (a) the requirement of molecular superposition, (b) dependence
of the statistical quantities on the grid-point distance, and (c) the use of partial charges
in representing electrostatic interactions. In addition, the implementing these methods
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based on 3D structures are in general difficult and time-consuming because of the
difficulty in generating optimal 3D conformations of molecules under study [16].
Typically, molecules are aligned by performing an overlap of common structural units.
The possibility ofmolecular alignment and their types is an inherent, and often critical,
element of many 3D QSAR methods [27–29]. This “alignment schedule” is adequate
for a data set, that is closely related structurally, but is farmore difficult to apply to either
a diverse data set or on the basis of some structural property other than shape, even for
sterically similar molecules. In addition, the alignment rules can introduce user bias
and the resultant model being dependent upon and sensitive to the alignment used. In
conclusion, molecular superposition remains an intrinsic and problematic requirement
of many 3D QSAR methods, which can only be eliminated if the binding mode of a
ligand with respect to the receptor, i.e., the alignment of the ligand with respect to the
receptor and the conformation of the receptor-bound ligand, is experimentally known.
This involves knowledge of the structure of the ligand-receptor complex, a condition
that is unfortunately seldom fulfilled.

One of the approaches for overcoming this problem is by using a 3D model from
Cartesian coordinates, which is invariant to rotation and translation of the molecule
and alignment-independent (free) [24,30]. The MS-WHIM (weighted holistic invari-
ant molecular) (and also WHIM descriptors [31]) approach overcomes the problem
of molecular alignment by calculating statistical parameters (eigenvalue proportion,
skewness and kurtosis) from the score matrix obtained from weighted principal com-
ponent analysis (PCA) [32]. Methods based on autocorrelation of certain molecular
properties represent another type of approaches that are alignment insensitive [32,33].
Another example of a novel 3D QSAR approach invariant to molecular orientation,
and therefore, that does not require alignment rules, is comparative spectra analysis
(CoSA) [34]; in which molecular spectra are used as three-dimensional MDs for the
prediction of biological activities. The grid-independent descriptors (GRIND) are also
another significant example of this kind of MDs [24]. The vibration-based descriptors
(EVA) represent another important method (these MDs appear to be even less sensi-
tive to conformation) which unlike 3D-QSAR methods such as CoMFA, provides a
conformationally sensitive but, superposition-free descriptors that have been shown
to perform well with a wide range of datasets and biological endpoints [35,36]. The
distance atomic physicochemical parameter energy relationships (DAPPER) method
is sensitive to the 3D structure, but has an advantage over field-based 3D QSAR
methods in as much as it is invariant to both translation and rotation of the structures
concerned and thus structural superposition is not required [37]. Another alignment-
insensitive novel code, the 3D MoRSE (molecule representation of structures based
on electron diffraction) code was proposed for representing the 3D structure [38].
The CoMMA method provides 3D descriptors independent of the orientation of the
molecules in space as well [39]. Finally, GETAWAY (geometry, topology, and atom-
weights assembly) and RDF (radial distribution functions) MDs are two appropriate
families of parameters rather useful to coding the 3D molecular structure [40].

On the other hand, during past decade there has been a tendency to extend traditional
topological indices (TIs) to account for 3D representation of the molecule by includ-
ing geometrical information. Among such indices, are the 3D-Wiener, 3D-Harary,
3D-Balaban, 3D-Gravitational indices, the 3D-Petitjean shape indices, the Randić
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molecular profiles, BCUT descriptors, etc., [40–48]. These MDs are alignment-free,
easily and quickly calculated (and also faster and easier to implement in an automated
fashion), and are typically characterized by the same or better statistics; thus being
suitable for QSARs. In addition, chiral indices derived from molecular graphs (as
modified conventional (nonchiral) topological descriptors) have been proposed and
applied in several QSAR studies of several benchmark datasets [9,10,49–54]. In all
of these studies chirality MDs were characterized by similar or better statistics and
predictive power compared with CoMFA and/or other 3D-QSAR models reported in
the literature for the same datasets.

In previous papers, one of the authors, introduced new sets of atom- and bond-
level MDs of relevance to QSAR/QSPR studies and “rational” drug design, atom-
and bond-based 2D-linear indices [12,55,56]. These local (atomic, group and atom-
type) indices are based on the calculation of linear maps (and linear functional) in Rn ,
using canonical basis sets. The description of the significance-interpretation and the
comparison with other MDs were also performed. This approach describes changes in
the electronic distribution with time, throughout the molecular backbone. Specifically,
features of the kth total and local linear indices upon variations in the molecular struc-
ture, including chain lengthening and branching as well as content of heteroatoms,
and multiple bonds were illustrated by various examples. This in silico-method has
been successfully applied to the prediction of several physical and chemical proper-
ties of organic compounds [12,56,57]. TheseMDs, and their stochastic forms [12,58],
have also been useful in the selection of novel subsystems of compounds with desired
properties/activities in virtual screening protocols [59–64]. In addition, the molecu-
lar linear indices (2D) have been extended to consider three-dimensional features of
small/medium-sized molecules based on the trigonometric–3D–chirality–correction
factor approach (2.5 GBT-like indices) [53,65].

In this report we present alignment-free global and local 3D-linear descriptors,
derived in a similar way, (accounting for 3D molecular information, although based
on topological approaches previously defined in 2D and 2.5-atombased linear indices).
Moreover, we propose novel total and local (atom, atom-type and group) MDs based
on the extended and generalized 3D (geometric) distance matrices. Algebraic trans-
formations on thesematrix representations yield “stochastic”, “double-stochastic” and
“mutual probabilistic” distance matrices for atom-pairs, from which 3D (geometric)-
linear indices are obtained. In order to evaluate the contribution of the extended and
generalized 3D distance matrices on the variability of the 3D-linear indices derived
thereof, we compare the information content encoded by these MDs using a method-
ology proposed by Godden and Bajorath based on the concept of Shannon’s entropy
[66,67]. For this analysis, we use DRAGON’s sample data consisting of 41 heteroge-
neous molecules. This data was also used to compare the information content codified
by the new 3D-linear indices with the MDs implemented in the DRAGON program
using principal component analysis (PCA). In addition, the correlation ability of the
newMDs is tested in QSPR studies of selected physicochemical properties of octanes
(first experiment), in the description of the boiling point of 28 alkyl-alcohols (sec-
ond experiment), as well as in the modeling of the specific rate constant (log k) and
partition coefficient (log p) of 34 derivatives of 2-furylethylenes (third experiment).
Comparisonswith other approaches (vertex- and edge-based connectivity indices, total
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and local spectral moments, quantum-chemical descriptors, plus E-state/biomolecular
encounter parameters) are carried out in order to analyze the behavior of the novel
method in these QSPR studies with regard tomost of theMDs reported in the literature
to date.

2 Theoretical scaffold

In the classical TOMOCOMD-CARDD approach, the linear descriptor of a molecule
composed of m atoms is a linear function (form) of the atom linear maps from Rm to
the scalar R [ f (�x): Rm → R], and it is expressed in matrix form as [56]:

f (�x) =
m∑

i=1

m∑

j=1

gi j x j = �ut · G · �x (1)

where, m is the number of atoms in the molecule, �ut is a m-dimensional row vector
whose components are unity, �x is the molecular vector and G is the structural infor-
mation matrix that characterizes the molecular graph [56,58,68]. The coefficients gi j
are the elements of matrix G and x j are the coordinates of the atom-based molecular
vector (�x) in the so-called canonical (‘natural’) basis set.

Note that Eq. (1) is defined as a linear form (global index). However, these linear
indices can be defined as linear transformations (linear applications) f (�xi ) in the
molecular vector space�m . This map is a correspondence that assigns a vector f (�xi )to
every vector �x in Rm . That is, if a molecule consists of m atoms, then the atom linear
indices for atom i are calculated as linear maps in Rm (endomorphism in Rm), in
canonical basis set. Specifically, the atom-level linear indices, f (�xi ), are computed as
shown in Eq. (2):

f (�xi ) =
m∑

j=1

gi j x j = G · �x = Y (2)

In this way, the total linear index (whole-molecule), f(�x), is calculated from local
(atom) linear indices as shown in Eq. (3):

f (�x) =
m∑

i=1

f (�xi ) = �ut · Y (3)

2.1 Molecular vector

The molecular vector contains information about of the properties of the atoms or
entities of a molecule or macromolecule. Given a molecule with m atoms, the com-
ponents of vector �x are numerical values corresponding to particular atomic property,
that is [56,58,64]:

�x = {x1, x2, x3, . . . , xm} (4)

The atomic properties used in this work wereMulliken electronegativity (χ), polar-
izability (α), atomic mass (m) and van der Waals volume (r). For values of these
properties see Table S1 of the Supplementary Information.
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2.2 Total and local structural information matrices

The TOMOCOMD-CARDD 2D approach uses graph-theoretical matrices in order to
codify structural information of molecules, mainly adjacency matrices of molecular
pseudographs, macromolecular graphs [68] and bond-based graphs [12]which contain
information about long- and short-range covalent interactions within molecule, but
these exclude the non-covalent interactions. With the aim of including all possible
interactions, we propose to associate themolecular structural information to a function
× expressed as Taylor or McLaurin series of the interatomic distance g:

X (g) =
∞∑

i=0

ai · gi (5)

The general definition of distance depends on the space and metric. If a molecule
is in an Euclidean space, it is possible to generalize the distance between the atoms i
and j through Minkowski distance [69]:

gn,p
i j = (|xi − x j |n + |yi − y j |n + |zi − z j |n

)p/n (6)

where x, y and z represent the coordinates in Cartesian axis; n is the Minkowski
distance norm, order or metric (e.g., n = 1 is the Manhattan, or city-block distance,
and n = 2 the well-known Euclidean distance). The p value, [i in the Eq. (5)], is an
analogue to the topological step-count and it measures the range of the interaction.
In this report, similar to the graph-theoretical framework, we propose a matrix Gn,p

to codify the structural information of a molecule. Henceforth, it will be known as
non-stochastic Minkowski distance matrix.

It should be noted that this matrix, Gn,p, is the more general case (extended or
expanded) of the well-known geometry matrix, G (if n = 2 and p = 1, then
Gn,p = G). The geometry matrix (or geometric distance matrix) of a molecule is
a square symmetric matrix m ×m whose entry ri j is the geometric distance calculated
as the Euclidean distance between the atoms i and j ; diagonal entries are always
zero. Geometric distances are intramolecular (interatomic) distances [70]. Like the
molecular matrix forms, the geometry matrix contains information about molecular
configurations and conformations.

A normalization of our “extended” geometric distance matrix Gn,p can be obtained
by using probability-based matrices derived from Gn,p. These representations are
based on a probability matrix to describe the interatomic interactions [9,61,71–76]. In
TOMOCOMD-CARDD2D, the pseudograph’s stochastic adjacency matrix describes
changes in the electron distribution over time throughout the molecular backbone. In
this scheme, a hypothetical situation in which a set of atoms are initially free in
space is considered (discrete object in the space). Later, outer shell electrons of atoms
are distributed around atomic cores in discrete intervals of time. In this sense, the
electrons in an arbitrary atom canmove to other atoms at different discrete time periods
throughout the chemical-bonding network. In our geometrical approach, this matrix
can be interpreted as the changes in the probability of atoms in a molecule to interact
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with each other—equivalent to the electron transfer process in a bond. Consequently,
we can consider this probability as a measure of the spreading of the atoms (taken as
discrete objects) in the space. On this basis, we have defined the stochastic Minkowski
distance matrix (ssGn,p), which can be obtained from Gn,p as follows:

ss gn,p
ij = gn,p

ij∑
j

gn,p
ij

(7)

These matrices are not necessarily symmetric, therefore, in an interaction process
between atoms i and j , the probability of an electron to move from atom i to j
could be different to the probability to move from j to i , e.g. the transfer of elec-
trons in a carbonyl bond is more probable from carbon to oxygen than the reverse
process. Additionally, with the aim of equalizing the probabilities in both senses
[77], we have proposed the use of a doubly-stochastic matrix, defined as a matrix
with real nonnegatives entries whose column and row sums are 1 [78,79]. Hence-
forth, these matrices are referred to doubly stochastic Minkowski distance matrices
(dsGn,p).

The process to find the doubly stochastic matrix associated to a non-stochastic
matrix is not trivial. According to Sinkhorn, a strictly positive matrix A can be scaled
to a doubly stochastic matrix B by,

B = D × A × D (8)

where, D is a diagonal matrix [80]. In 1967, Sinkhorn and Knopp extended this the-
orem to nonnegative matrices and, also proposed the well-known iteration algorithm
for matrix balancing that bears their names [81]. Finally, Johnson et al. [82], have
considered the problem of the scaling euclidean distance matrices to doubly stochas-
tic matrices, demonstrating that it is possible to scale them using the Eq. (8). On this
basis, it is possible to find a doubly stochastic Minkowski distance matrix (dsGn,p)

from a non-stochastic Minkowski distance matrix (Gn,p) through the Eq. (8) and the
Sinkhorn–Knopp algorithm.

Finally, theMinkowski distance-based mutual probabilitymatrix is introduced. The
elements mpgn,p

i j are obtained as follows:

mpgn,p
i j = gn,p

i j

m(S)
= gn,p

i j
m∑

i=1

m∑
j=1

gn,p
i j

(9)

where, mpgn,p
i j denotes the mutual probability between vertices i and j , and m(S) the

sample space. The sample space is computed by summing all elements of Gn,p.
As an extension, these matrix approaches should be suitable for representing a

molecular fragment, L, of the whole molecule. In this sense, it is possible obtain the
structural information matrix of the molecular fragment L, Gn,p

L from the total matrix,
Gn,p:
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gi j (L) = gi j if i ∧ j ∈ L

= 1

2
gi j if i ∨ j ∈ L (10)

= 0 otherwise

Consequently, if a molecule is partitioned into Z molecular fragments, the total
matrix can be partitioned in Z local matrices, i.e., the total matrix can be expressed as
the sum of the local matrices of the Z fragments.

2.3 Definition of new descriptors: 3D-linear descriptors of the Minkowski
distance matrices

If a molecule consists of m atoms, then the pth linear indices of order n for atom i in
a molecule are calculated as linear maps in Rm (endomorphism in Rm), in canonical
basis set as shown in Eq. (2). Specifically, the pth non-stochastic, stochastic, doubly-
stochastic as well as mutual probabilistic Minkowski distance 3D-linear descriptors of
order n are computed from their pth non-stochastic, stochastic and doubly-stochastic
and mutual probabilistic Minkowski distance matrices of order n as shown in Eqs.
(11)–(14), respectively:

f n,p
i (x) =

m∑

j=1

gn,p
i j xj = Gn,p[�x] (11)

ss f n,pi (x) =
m∑

j=1

ss gn,p
ij xj = ssGn,p[�x] (12)

ds f n,pi (x) =
m∑

j=1

ds gn,p
ij xj = dsGn,p[�x] (13)

mp f n,pi (x) =
m∑

j=1

mpgn,p
ij xj = mpGn,p[�x] (14)

where, m is the number of atoms in the molecule, and x j are the coordinates of the
molecular vector (�x) in the so-called canonical (“natural”) basis set. In this basis set,
the coordinates of any vector coincide with the components of this vector [83–85].
Therefore, these coordinates can be considered as weights (labels) of the atom-atom
distance.

Note that atom-level linear indices are defined as a linear transformation f n,p
i (�x)

in the molecular vector space Rm . This map is a correspondence that assigns a vector
f n,p(�x) to every vector �x in Rm , in such a way that:

f (λ1�x1 + λ2�x2) = λ1 f (�x1) + λ2 f (�x2) (15)

for any λ1, λ2 and vectors �x1, �x2 in Rm .
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The total (wholemolecule) atom-basednon-stochastic, stochastic, doubly-stochastic
as well as mutual probabilistic linear indices, f n,p(�x), ss f n,p(�x) and ds f n,p(�x),
mp f n,p(�x), are calculated from atomic linear indices as shown in Eqs. (16)–(19),
respectively:

f n,p(�x) =
m∑

i=1

f n,pi (�x) = [�u]Gn,p[�x] (16)

ss f n,p(�x) =
m∑

i=1

ss f n,pi (�x) = [�u]ssGn,p[�x] (17)

ds f n,p(�x) =
m∑

i=1

ds f n,pi (�x) = [�u]dsGn,p[�x] (18)

mp f n,p(�x) =
m∑

i=1

mp f n,pi (�x) = [�u]mpGn,p[�x] (19)

Finally, in addition to the total and atomic 3D-linear indices computed for each atom
in themolecule, local-fragment (atom-type or group) formalism can be developed. The
kth atom-type 3D-linear index is calculated by adding the kth atomic 3D-linear indices
for all atoms of the same type in the molecule. To be precise, this extension of the
atom-level linear index is similar to the group additive scheme, in which an index
appears for each atom type in the molecule, together with its contribution based on
the atom linear index. Consequently, if a molecule is partitioned into Z molecular
fragments, the total linear indices can be partitioned into Z local linear indices, L =
1,…, Z. Furthermore, the total 3D-linear indices can be expressed as the sum of the
local 3D-linear indices of the Z fragments:

f (�x) =
∑

i=1···Z
fi(�x) (20)

In the atom-type (or group) 3D-linear index formalism, each atom in the molecule
is classified into an atom-type (fragment). To this effect, atoms may be classified into
atom types, in terms of the characteristics of the two atoms that define the bond. For
all data sets, including those with a common molecular scaffold as well as those with
very diverse structures, the fragment linear-indices provide a lot of useful information.
Thus, the development of the atom-type and group 3D-linear indices provides the
basis for application to a wider range of biological problems, in which the local
formalism is adequate, without the need for superposition of a closely related set of
structures.

2.4 Sample calculation

Up to the preceding section, the theoretical framework of the novel 3D-linear
indices has been described. It is natural to perform a calculation on a molecule
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Fig. 1 Workflow for 3D-linear indices (total MDs) calculation

to illustrate the steps in the procedure. To this end, we depict a pictorial repre-
sentation of the computation of the non-stochastic, stochastic, doubly-stochastic
and mutual probabilistic 3D-linear indices (both total and local), using a sim-
ple chemical example. Considering the molecule of 2-methyl-propanaldehyde as
a simple example, we illustrate the workflow for the proposed methodology in
Fig. 1.
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3 Analysis of molecular information captured by the proposed 3D-linear
indices and their linear dependence

In this section,we compare the information contained in the 3D-linear andDRAGON’s
software MDs [86]. For this analysis, we use 41molecules of DRAGON’s sample data
(methane not considered, see Table 1). As can be observed, though this chemical
data is relatively small, it is rather heterogeneous, thus allowing the comparison of
the information codified by MDs. The descriptor calculations were performed using
QuBiLs-MiDAS (quadratic, bilinear and linear maps based on Minkowski distance
matrices and atomic weightings), a new module of TOMOCOMD-CARDD program
that offers fast and low-computational-cost calculations of the proposed MDs. Note
that mutual probabilistic 3D-linear indices were neither considered neither for this
study nor in the ensuing sections.

In order to conduct this study, we carry out factor analysis using the principal
components method. This is a versatile data analysis method for summarizing the
information contained in several variables into a small number ofweighted composites.
The theoretical aspects of this statistical technique have been extensively explained
elsewhere [87–91]. The general objectives of factor analytical techniques are (1) data
reduction and (2) interpretation of the underlying relationship between variables, i.e.,
to classify variables. In this context, factor loadings (or “new” variables) are obtained
from original (MDs) variables [87–91]. These factors capture most of the “essence”
of the MDs because they are a linear combination of the original items. Because each
factor is defined to maximize the variability that is not captured by the preceding
factor, consecutive factors are orthogonal to each other. Therefore, the first factor is
generally more highly correlated with the variables than the other factors. Some of the
most valuable conclusions that can be drawn from factor analysis are: (1) variables
with high loadings in the same factor are correlated and this correlation will be greater
the higher the loadings, (2) no correlation exists between variables having nonzero
loadings in only different factors. The existence of linear independence has been
claimed by Randić as one of the desirable attributes for novel TI’s [40].

Factor analysis is performed with the STATISTICA software [92] and “varimax
normalized” is used as the rotational strategy to obtain the factor loadings from the
principal component analysis [92]. The goal of this rotational procedure is to obtain a
clear pattern of loadings, i.e., factors that are clearly marked by high loadings for some
variables and low loadings for others. This rotation strategy maximizes the variances
of the square normalized factor loadings (row factor loadings divided by square roots
of the respective communalities) across variables for each factor. This strategy makes
the factors pattern structure as simple as possible, permitting a clearer interpretation of
the factors without loss of orthogonality among them. In this analysis, factor loadings
greater than 0.60 are considered.

The table reflecting the factor loadings of all the MDs used in this study is available
as supporting information (Table S2).

Table 2 shows the eigenvalues and the percentages of the explained variance by 8
principal factors of this analysis, which explain approximately 91.05% of the cumu-
lative variance.
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Table 2 Results of the factor analysis by using the principal component method for 0D–3D DRAGON
MDs as well as the total and local (atom type) 3D-linear indices for 41 heterogeneous chemicals

Factor Eigenvalue % Total variance Cumulative eigenvalue Cumulative (%)

F1 2504.15 62.60 2504.15 62.60

F2 466.60 11.67 2970.76 74.27

F3 256.27 6.41 3227.03 80.68

F4 148.04 3.70 3375.07 84.38

F5 89.40 2.24 3464.47 86.61

F6 69.37 1.73 3533.84 88.35

F7 58.34 1.46 3592.18 89.80

F8 50.01 1.25 3642.19 91.05

With a simple examination of the principal components, it is intuitive that the
TOMOCOMD-CARDD (namely, QuBiLs-MiDAS) MDs are strongly loaded in fac-
tor one (62.60%) and factor three (6.41%); while factor two (11.67%) is particularly
important for DRAGON’s MDs with robust and exclusive factor loadings. This result
suggests that there exists orthogonality between the novel the 3D-linear indices and
DRAGON’s MDS as a whole. In other words, the former codify structural infor-
mation not codified by the latter, which rationalizes the contribution of the new
mathematical approach in the codification of the geometric space of a molecular struc-
ture. In order to have deeper comprehension of the relationship among the 3D-linear
indices, a more painstaking analysis of factors one and three (collectively explain
69.01% of the total variance) is performed, revealing curious behavior. First of all,
total and fragment-based 3D-linear indices for aromatic rings (ARM), sp2 (SP2) and
sp3 (SP3) hybridized carbons, pnictides or nitrogen group elements (NIT), methine
(CH), methylene (CH2) and methyl groups (CH3) are strongly loaded in Factor one
which suggests the existence of collinearity among the indices defined for these atom-
types. Logical explanations could be given to this outcome: (1) the presence of sp2
hybridized ring carbons is a necessary, but insufficient condition, for the existence of
aromaticity and it is thus natural that collinearity exists between these two groups,
(2) methyl carbons are sp3 hybridized, while methine and methylene carbons can be
sp2 or sp3 hybrids. Factor three seems to be relevant to fragment-based 3D-linear
indices for heteroatoms (HET) given their robust loadings in this factor. The rest of
the atom-based based 3D-linear indices present comparable representativity in both
factors with no clear-cut exclusiveness. Another important aspect that could be high-
lighted is that for any group of indices calculated over H-suppressed molecular graphs
loaded in a particular factor, analogous indices over H-explicit molecular graphs (MG)
are loaded in the same factor with representativity of equal magnitude. This outcome
suggests that there is no orthogonality in terms of captured structural information
when H-suppressed (leftsuperscript = ∗) or H-explicit MG are used. A yet keener
scrutiny of Table 2 reveals another interesting and consistent pattern. The majority
of the 3D-Linear index groups (with respect to the atom- and matrix-types) derived
from step-counts between 1 and 6 (associated to short-range non-covalent interatomic
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interactions) are loaded in Factor three while those from step-counts greater than 6
(long-range interactions) in Factor one. This suggests that there exists a ‘critical point’
in the force-interatomic distance curve beyond which there is a change in the elec-
tronic potential which could affect in the spatial configuration of amolecular structure,
leading to the gain of “new” structural information.

From this study two fundamental conclusions are drawn. (1) The different
approaches used in the definition of the 3D-linear indices contribute to generation
of orthogonal MDs. (2) The proposed 3D-linear indices codify structural information
not described by DRAGON’s MDs, a whole.

3.1 Variability analysis of the proposed atom-based 3D-linear indices

The identification of the most suitable variables from a high-dimensional MD space
to be incorporated in a computational model is a non-trivial challenge because an
exhaustive exploration of the entire descriptor space is time-consuming and unprac-
tical. Several dimension reduction approaches have been reported in the literature
[40,93]. Principally, these methods seek to filter out the MDs most representative for
a molecular data set. However, most of these methods are based on the assumption of
linearity, which is not necessarily fulfilled for a given MD space.

Godden et al. [68] proposed an information theory-based approach, using the con-
cept of Shannon’s entropy, to evaluate and quantify the information content and, thus,
the variability of MDs. Since MD value ranges may substantially differ for a given
data set, to guarantee comparability, the first step in this approach is to apply a scal-
ing procedure (binning scheme) forming histograms of descriptor distributions (equal
interval width method). It is to the resulting uniform data distribution that Shannon’s
fundamental Eq. [94] is subsequently applied.

With the aim of evaluating the quality of the MDs proposed in the present report
and demonstrate the potential of these 3D indices as a reliable tool in chemoinformatic
studies, some of the authors implemented this innovative application of information
theory to variability analysis in an interactive software denominated IMMAN (acronym
for Information Theory based chemometric analysis) [95], enriched with additional
parameters, derived from modifications of Shannon’s entropy as: standardized Shan-
non’s entropy (sSE), Negentropy (nSE), BrillouinRedundancy Index (rSE), Gini index
(gSE) and Information Energy Content (iSE), previously not used in the evaluation of
the variability of MDs [40].

The study carried out in this section was sub-divided in four main parts: (1)
matrix-oriented analysis of the 3D-linear indices (2) comparison between 3D- and 2D-
linear indices (3) Family-wise evaluation ofDRAGONandQuBiLs-MiDAS 3D-linear
indices (4) QuBiLs-MiDAS (3D-linear indices) software versus other MD calculating
packages.

A binning scheme of 41 intervals (bins) was used for the SE computation of the
MDs. For this discretization scheme, the maximum entropy (Hartley’s entropy) is
given by log241 = 5.358 bits. The same number of variables was used for each case
study to ensure an objective comparative analysis, with the class presenting the least
number of variables determining the cut-off value. For the rest of the classes, the best
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Fig. 2 Shannon’s entropy distribution for non-, simple-, and doubly-stochastic 3D-linear indices

variables up to the cut-off number were considered. The use of the same number of
variables is preferred to the probability-based normalization procedure used by Hong
et al. [96] as this gives a subjective graphic perspective when comparing cases with
markedly unequal number of variables. However, in the case that the same number of
variables be used, the probability scale could be used as well.

3.2 Comparative analysis of 3D-linear indices for non-, simple-, and
doubly-stochastic matrix approaches

The purpose of the present study is to evaluate the contribution, in terms of the
variability, of the different matrix-based approaches i.e. non-, simple-, and doubly-
stochastic matrices in the definition of the 3D-linear indices. Figure 2 illustrates
a graphical comparison of Shannon’s distribution for the best 4000 variables of
non-, simple-, and doubly-stochastic 3D-linear indices. Comparable behavior is
observed for higher entropy (>3.0 bits) simple-stochastic and no-stochastic linear
indices although below this value a marginally better distribution pattern for simple-
stochastic linear indices is observed. On the other hand, the two groups of indices
present better distribution patterns thandouble-stochastic 3D-linear indices. This result
suggests that a greater percentage of highly variable MDs are obtained with simple-
stochastic and non-stochastic matrix-based approaches than the double-stochastic
formalism.

3.3 3D-linear indices versus 2D counterpart

In previous reports [97,98], Marrero-Ponce et al. defined 2D-linear indices calculated
as linear maps on Rm . Bearing in mind that this report focuses on a dimensional
extension of these indices, an analysis of the possible contribution, in variability terms,
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Fig. 3 Shannon’s entropy distribution for 3D- versus 2D-linear indices

of this geometric approach is necessary. Figure 3 shows the Shannon’s distribution
graph of the best 768 variables for two families of indices (cut-off number provided by
2D-linear indices). As can be seen a strikingly better entropy distribution is observed
with 3D-linear indices in comparison to the 2D-linear indices, with 85% of the former
presenting entropy values over 3.5 bits (66% of maximum entropy) in comparison
with 21% of the latter at the same level. This result suggests that the incorporation
of information on the spatial configuration to the linear index formalism improves
the global variability of the linear indices, and thus better discriminating power for
molecular datasets may be obtained.

3.4 Family-wise comparison of DRAGON and the 3D-linear indices

TheDRAGON software, one of themost popular packages used in QSAR/QSPR stud-
ies, is comprised of various MDs families. Here, our goal is to compare the entropies
of these descriptor families and the 3D-linear indices. Some DRAGON families were
grouped together into bigger families, i.e., OD-1D and others (functional group counts,
atom-centered fragments, constitutional descriptors and molecular properties), 3D-
Indices (charge descriptors, 3D-Morse descriptors, Randić molecular profiles and
geometric descriptors), Topo-Indices (topological indices, topological charge indices,
connectivity indices) and Eigen-Indices (Burden eigenvalue descriptors, eigenvalue-
based indices, 2D autocorrelations). The best 47 variables for each of these families
were considered, with DRAGON’s information indices determining this cut-off num-
ber as the family with the fewest number of variables. The 3D linear indices presented
comparable entropy distributions with 3D-indices and GATEWAY descriptors. On the
other hand, better entropy distributions are observed when the 3D linear indices are
compared with the rest of DRAGON’s descriptor families (see Fig. 4).
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Fig. 4 Shannon’s entropy distribution for DRAGON’s and 3D-linear descriptor families

3.5 Comparison of QuBiLs-MiDAS (3D-linear indices) software with other
descriptor calculation packages

The fourth study constitutes a broader analysis, with the objective of comparing vari-
ability of the QuBiLs-MiDAS software program and some of the relevant programs
used in for descriptor calculations in chemoinformatics such as: DRAGON [86],
MOLd2 [96], PADEL [99], MODESLAB [88,100–102], BLUECAL [103], MOL-
CONNZ [104], POWER MV [105], and CDK [106]. The cut-off number of 170
variables was provided by BLUECAL software. The top 25 descriptors obtained for
each of these softwares listed in Table 3 show relatively comparable entropy distrib-
ution.

Figure 5 is a graphic illustration of Shannon’s entropy distribution for these
softwares, where QuBiLs-MiDAS software (represented by only 3D-linear indices)
demonstrates similar to better entropy distribution thanmost of the analyzed softwares.
For example, the number of MDs with entropy values greater than 4.00 bits are 170
(100%) for the case of 3D-linear indices in QuBiLs-MiDAS and DRAGON’s MDs,
44 (26%) for MOLD2, 39 (23%) for CDK, etc.

It isworth noting that, in the case ofDRAGONsoftwarewhere comparable behavior
is observed, this software encompasses a series of substantially diverse MD families
(0D–3D) derived from wide range of chemical and graph-theoretic concepts. This
outcome suggests that MDs calculated with the QuBiLs-MiDAS program may cap-
ture similar-to-better amount of structural information than the software packages
compared in this study, and may possibly be an important tool in QSPR/QSAR and
similarity/dissimilarity analysis. Although high variability is a desirable quality for
MDs, it is not the ultimate requirement for good correlations with a particular physico-
chemical, chemical or biological property to be obtained. Therefore, the next section
will be devoted to assessing the modeling power of the proposed 3D-linear indices.
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Fig. 5 Shannon’s entropy distribution for QuBiLs-MiDAS software and other MD calculating programs

3.6 QSPR modeling of benchmark datasets

QSARmodeling is based on the premise that the properties of molecules are a function
of their structural features. Thus proper codification of the information contained in
molecular structures should enable the description and prediction of molecular (or
molecular-fragment) properties. Consequently, in order to obtain deeper insight of the
contribution, if any, of our 3D-linear indices in the codification of molecular structural
information, several QSPRmodeling tasks of well-known physicochemical properties
are performed.

3.7 Datasets

To perform the QSPR studies, we have selected the following datasets to be investi-
gated: (1) 18 octane isomers, (2) 28 alkyl alcohols and, (3) 34 furylethylenes deriv-
atives. The first has been advocated by Randić and Trinajstić [107,108] and used by
several researchers to evaluate the modeling power of molecular descriptors [88,109–
115]. Presently, it is considered by International Academy ofMathematical Chemistry
as oneof the benchmarkdatabases for comparingold (well-known)MDswith newones
[107,108]. These datasets are recommended due to the fact that most of the physico-
chemical properties commonly studied with MDs in QSPR analyses are interrelated
for data sets of compounds with different molecular weights. When isomeric data sets
are used these correlations with the same descriptors are not necessarily observed.

On the other hand, all MDs are designed to have (gradual) augmentation with
increments in the molecular mass. In this way, if we perform the present study by
using a series of chemicals having different molecular weights, we may find “false”
interrelations between the descriptors by an overestimation of the size effects inherent
to these indices [114,116]. The same is also validwhen aQSPRmodel is to be obtained.
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In conclusion, if a newly proposedMD is not able to model the variation of at least one
property of octanes (FIRST EXPERIMENT), then it probably does not contain any
useful molecular information. Precisely, to evaluate the quality of the models based on
our MDs, we analyzed the statistical parameters for the best QSPR models obtained
in the description of the boiling point (BP), motor octane number (MON), heat of
vaporization (HV), molar volume (MV), entropy (S), and heat of formation (�Hf)

of the octane isomers. The regressions for these models were compared with: (1)
parameters for models published by Randić [113–116] based on diverse topological
indices such as theWiener matrix invariants, (2) results for models reported by Diudea
[111] based on the SP indices, and (3) parameters for the best models obtained with a
set consisting of the topological, WHIM, and GETAWAY descriptors [108].

The SECOND EXPERIMENT focused on the examination of the possibilities of
ourMDs in the QSPR studies with heteroatomic molecules, selecting the boiling point
of 28 alkyl-alcohols, as the property to be investigated [102,117]. This data set was
first studied by Kier and Hall [117] using E-state/biomolecular encounter parameters
and later by Estrada and Molina [102] employing the local spectral moments of the
edge adjacency matrix. This heteromolecule-based database is composed of 28 alkyl-
alcohols, inwhich 14 are primary, 6 secondary and 8 tertiary. The boiling points (Bp) of
these compounds have been experimentally determined and reported in the literature.
This isomeric dataset of heteroatomic compounds is suitable for comparative studies
of MDs, since the boiling point not only depends of gradual variation of molecular
weight, but also on the H-bonding capacity and R-group type. Additionally, results of
QSPR studies are available for comparison purpose [102,117].

The third dataset, and second heteromolecule-based database, consists of a set of
34 2-furylethylene derivatives (THIRD EXPERIMENT), studied earlier with total
and local spectral moments, 2D/3D vertex- and edge- connectivity indices and two
quantum-chemical descriptors [102,118]. These chemicals, whose chemical structures
are shown in the Table S3, have different substituents at position 5 of the furan ring,
as well as at the β position of the exocyclic double bond [119]. The values of the
n-octanol/water partition coefficient (log p) and rate constant (log k) (for nucleophilic
addition of the mercaptoacetic acid) of these compounds have been experimentally
determined and reported in the literature [119], (see Table S3 of the electronic supple-
mentarymaterial). The lipophilicity and the nucleophilic addition of the thiol groups of
some enzymes to the exocyclic double bond of 2-furylethylene derivatives are critical
for their antibacterial activity [119]. The log p and log k of nucleophilic addition of the
mercaptoacetic acid to the exocyclic double bond are fundamental in the understand-
ing of the biological behavior of these 2-furylethylene derivatives [12,118]. Thus, a
study of these properties, using the proposed MDs, permits us to obtain a general
criterion about the applicability of these indices in QSPR studies.

The local fragments considered in the calculation of the local descriptors were
designed according to the structural characteristics and the properties of the mole-
cules in the datasets. Table 4 shows a summary of the local fragments used in this
work. Additionally, in 2-furylethylenes the substituents R1, R2 and R3 (described in
electronic supplementary material Table S3), were also considered for the calculation
of local indices.
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Table 4 Molecular and atomic fragments used to calculate local descriptors

Fragment Symbol Experiment

1 2 3

Methyl, methylene, methyne
and quaternary carbon

CH3, CH2, CH1, QC X X

Hybridisation SP3, SP2, SP1 X X X

Heteroatoms HET X X

pnictides, Chalcogens and
Halogens

NIT, SUL and HAL X

Individual element Atomic symbol X X

Aromatic fragment AR X

H bond-acceptor and donor HBA and HBD X

3.8 Descriptor calculations

Themolecules contained in each dataset weremodeled and their geometries optimized
with Mopac2009 software at semi-empirical level using PM6 Hamiltonian [120]. The
total and local non-stochastic, stochastic and doubly-stochastic 3D molecular linear
descriptors on Minkowski atom-atom distance matrices [Eqs. (16)–(18)] were codi-
fied in an experimental version of TOMOCOMD-CARDD software (QuBiLs-MiDAS
module) and calculated for the datasets mentioned above. In this work, the norm (n)
and step-count (p) were ranged between 1–3 and 1–15, respectively.

3.9 Statistical analysis

With the large number of MDs generated by the TOMOCOMD-CARDD approach,
it is difficult to predict which descriptor subsets are most suitable for providing the
best regressions, considering both goodness of fit and the chemical meaning of the
regression. Therefore, machine learning techniques like genetic algorithms (GAs)
and neural networks (NNs) are often used to facilitate descriptor selection, which
can be done by systematically exploring various descriptor combinations and further
refining those that give best intermediate results. In the present work, we have used
GA variable selection [28,121–125]. inspired by the process of Darwinian evolution,
in which individuals of high fitness in an initial population prevail and/or survive to
the next generations; the best individuals can be adapted by crossover and/or mutation
in the search for better individuals.

The softwareMOBYDIGS (version 1.0—2004) [126] was used to perform variable
selection andQSPRmodeling. Themutation and reproduction probabilities were fixed
at 10%. The size of the models was set between three and six descriptors plus the
independent variable depending on dataset. The population sizewas established as 100
and a maximum of 10,000 generations were allowed to find an optimal QSPR model.

The models were optimized using as objective function (optimization function)
the statistical parameter Q2LOO (“leave one out” cross-validation) and they were
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validated using both techniques “bootstrapping” (Q2BOOT) and “y-scrambling” [a
(R2), a (Q2)]. The former evaluates the predictive power of the developed models and
the latter checks the risk of chance correlations (common occurrence when too many
variables are screened relative to the number of available observations) [126,127].
The selection of the best model was processed in terms of the highest determination
coefficient (R2), F test (Fisher ratio’s p-level [p(F)]) or leave-one-out (LOO) cross-
validation (Q2

LOO), and the lowest standard deviation (s).

3.10 QSPRs and comparison with other MDs

3.10.1 Experiment 1

Here, several physicochemical properties of the octane isomers were analyzed. How-
ever, to evaluate the quality of the models based on our new atom-level chemical
descriptors we have taken as reference only six physicochemical properties selected
in the previous study [128]. The regressions of octane properties [boiling point (BP),
motor octane number (MON), heat of vaporization (HV),molar volume (MV), entropy
(S), and heat of formation (�fH)], based on the non-, simple- and doubly-stochastic
atom-based 3D linear indices, will be compared to some regressions based on 2D
(topological/topo-chemical) and 3D (geometrical) MDs, taken from the literature
[128].

The best models, found using our 3D-linear indices are presented in Table 5. For
each selected property of octane isomers, the statistical information for the best regres-
sions with 1, 2, and 3MDs published so far [128] are also depicted in Table 5, together
with the LOO cross-validation-explained variance (Q2LOO), the correlation coeffi-
cient (R2), the standard deviation the error (s), and Fischer ratio (F) are listed.

As can be appreciated from the statistical parameters of regression equations in
Table 5, all of the physicochemical properties were adequately described by atom-
based 3D-linear indices. From this table it is evident that the statistical parameters for
the models, obtained with our MDs to describe motor octane number (MON), molar
volume (MV) and heat of vaporization (HV) of octanes, are better than those reported
in the literature. Only the models that describe entropy (S) have subtle differences
with the precedent models.

According to the obtained QSPR results, it is possible to conclude that the new
MDs encode useful molecular information and exhibit considerable diversity, being
able to adequately describe the variation in different properties of octanes.

3.10.2 Experiment 2

In this study, we select QSPR models for non-, simple and doubly-stochastic atom-
level MDs that best describe the boiling point of 28 alkyl alcohols, represented by
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ĪM D

R
+ 6

(u
)

2
0.
85

0
2.
41

9
0.
54

5

G
E
TA

W
A
Y
[1
28
]

R
+ 6

(u
)
R
4
(v
)

2
0.
81

8
2.
66

2
0.
45

5

G
E
TA

W
A
Y
+
W
H
IM

+
To

po
lo
gi
ca
l[
12

8]
R
6
(v
)

1
0.
67

6
3.
43

7
0.
32

7

To
po

lo
gi
ca
l[
11

1]
3
W

4
W

2
0.
62

8
3.
80

7

To
po

lo
gi
ca
l[
11

1]
7
W

1
0.
60

9
3.
78

0

E
nt

ro
py

(S
)

N
on
-s
to
ch
as
tic

3D
lin

ea
r
in
di
ce
s

∗ f
2,
8

C
H
3
(α

)
∗ f
1,
2
(m

)
∗ f
1,
1
(α

)
3

0.
96

1
11

5.
6

0.
98

1
0.
93

9

St
oc
ha
st
ic
3D

lin
ea
r
in
di
ce
s

ss
f1

,1
2

Q
C

(m
)

ss
f1

,1
2

Q
C

(χ
)

∗ ss
f1

,9 C
H

(χ
)

3
0.
97

2
16

4.
9

0.
82

5
0.
95

4

D
ou
bl
y-
st
oc
ha
st
ic
3D

lin
ea
r
in
di
ce
s

ds
f3

,1
3

C
H
3
(m

)
ds
f3

,1
3

C
H
3
(α

)
2

0.
92

7
95

.4
0

1.
29

8
0.
90

5

123



J Math Chem (2015) 53:2028–2064 2055

Ta
bl

e
5

co
nt
in
ue
d

A
pp
ro
ac
h

D
es
cr
ip
to
rs

N
R
2

F
s

Q
2 L
O
O

G
E
TA

W
A
Y
+
W
H
IM

+
To

po
lo
gi
ca
l[
12

8]
v
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Eqs. (21–23), respectively:

BP(◦C) = 54.3(±2.8) + 3.36(±0.18) × 10−1 · f1,1O (�r)
+ 1.73(±0.26) × 10−2 · f2,1( �m)−2.69(±0.25) × 10−3 · ∗f1,1CH3(�r) (21)

−3.56(±0.22) × 10−2 · ∗f1,2O (�χ)

N = 28 R2 = 0.993 Q2
LOO = 0.990 s = 2.6 ◦C sCV = 9.9 ◦C

F(4,23) = 800.0 p < 0.0001

BP(◦C) = −3.56(±2.60) − 42.0(±2.7) · ssf2,15QC (�α) − 1.00(±0.07) · ssf1,4CH(�r)
+ 0.62(±0.11) · ssf1,9CH3( �m) + 8.88(±1.20) · ssf1,15O (�α) (22)

+ 2.17(±0.06) · ∗
ssf

2,11(�χ)

N = 28 R2 = 0.999 Q2
LOO = 0.997 s = 1.1 ◦C sCV = 2.1 ◦C

F(5,22) = 3458 p < 0.0001

BP(◦C) = −8.06(±0.80) × 103 − 6.14(±0.74) · dsf1,7QC(�r)
− 32.9(±4.79) · dsf1,6CH(�α) + 1.45(±0.02) · ∗

dsf
1,4
CH2( �m) (23)

+ 4.91(±0.48) · ∗
dsf

1,2
CH3( �m) + 2.55(±0.26) × 103 · ∗

dsf
1,2
O (�χ)

N = 28 R2 = 0.997 Q2
LOO = 0.996 s = 1.7 ◦C sCV = 4.6 ◦C

F(5,22) = 1504 p < 0.0001
where,N is the number of compounds, R2 is the correlation coefficient, s is the standard
deviation of the regression, Q2

LOO (sCV) is the square correlation coefficient (standard
deviation) obtained from the LOO cross-validation procedure, and F is the Fisher ratio.
As can be seen, all three models show good performance in the description of Bp of
alkyl-alcohols.

These models, Eqs. (21)–(23), explain more than 99% of the variance of the exper-
imental Bp values. Similar results were reported by Estrada and Molina [102], and
Kier and Hall [117] by using spectral moments and E-states as MDs, where more than
98 and 92% of the variance of the experimental Bp values was explained, respectively.
The statistical parameters for the best equations obtained for these sets of MDs are
given in Table 6. Unfortunately, the cross-validation results for the precedent models
were not reported by the respective authors.

However, it is remarkable that our models explain a higher percentage of the vari-
ance of the experimental Bp values than the previously developed models, showing a
decrease in the standard error between 38 and 81%, with regard to the results previ-
ously achieved by Estrada and Molina [102], and Kier and Hall [117].

The QSPR model derived with 3D-level linear indices showed similar-to-better
results than those obtained by some of the present authors in previous studies [98]. To
conclude, it is important to highlight that the models (21)–(23) reveal the importance
of methyl groups and quaternary carbons which represent the presence and absence of

123



J Math Chem (2015) 53:2028–2064 2057

Table 6 Statistical parameters of the models describing the boiling point of 28 alkyl-alcohols, log p and
log k of 34 2-fyrylethylenes using different MDs

Molecular descriptors N R2 Q2
LOO s scv F

Boiling point of 28 alkyl alcohols

Non-stochastic 3D-linear indices 4 0.993 0.990 2.60 9.85 800.0

Stochastic 3D-linear indices 5 0.999 0.997 1.12 2.08 3458

Doubly-stochastic 3D-linear indices 5 0.997 0.996 1.70 4.58 1504

Local spectral moments [102] 5 0.982 – 4.2 − 23.8

Non-stochastic 3D-linear indices 3 0.984 0.978 3.84 17.9 482.3

Stochastic 3D-linear indices 3 0.996 0.994 1.87 4.38 2070

Doubly-stochastic 3D-linear indices 3 0.989 0.984 3.14 12.6 724.8

E-State [117] 3 0.926 – 5.8 − 204

Partition coefficient n-octanol/water (log P) of 34 2-furylethylenes

Non-stochastic 3D-linear indices 6 0.948 0.925 0.180 0.049 82.60

Stochastic 3D-linear indices 6 0.951 0.933 0.175 0.044 87.99

Doubly-stochastic 3D-linear indices 7 0.946 0.933 0.187 0.052 65.45

Vertex and edge Conn. Indices [118] 7 0.939 – 0.199 0.247 56.9

Topographic descriptors [118] 7 0.964 – 0.155 0.176 84.6

Quantum chemical descriptors [118] 7 0.875 – 0.319 0.370 45.5

Reactivity (log k) of 34 2-furylethylenes

Non-stochastic 3D-linear indices 7 0.950 0.918 0.359 0.222 71.09

Stochastic 3D-linear indices 6 0.980 0.972 0.221 0.072 225.33

Doubly-stochastic 3D-linear indices 7 0.990 0.983 0.164 0.046 354.37

Connectivity indices [102] 7 0.821 – 0.681 − 17.1

Global spectral moments [102] 7 0.843 – 0.655 − 18.8

Local spectral moments [102] 7 0.964 – 0.320 − 70.4

Quantum chemical descriptors [102] 7 0.968 – 0.288 − 112.2

branching, and the oxygen atom in the prediction of the boiling point of the aliphatic
alcohols.

3.10.3 Experiment 3

In this section, we evaluate the possibilities of the 3D-linear indices in QSPRs for the
partition coefficient (log p) and the specific rate constant (log k) of 34 derivatives of
2-furylethylenes and compare these results to those obtained by Estrada and Molina
[102,118] by using topological (total and local spectral moments and 2D connectivity
indices), plus topographic and quantum chemical descriptors. The MDs, included in
these equations, clearly pointed to the identification of the reaction centers involved
in the studied chemical interaction [102,118]. That is to say, the atoms 2, 6 and 7
or the bonds defined by these atoms (C2–C6 and C6–C7) were selected as the most
significant ones; because these are the ones involved in the exocyclic double bond of
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the 2-furylethylene and these are the “target” of the nucleophilic attack by the thiol
(mercapto) group. Taking into account this logical result, we also calculated the local
linear indices for these atoms (bonds C2–C6 and C6–C7). The best models obtained,
by using these 3D-linear indices, together with their statistical parameters, are given
below:

log p = 1.02(±0.19) + 6.65(±0.57) × 10−4 · f1,1AR( �m)

−1.00(±0.16) × 10−7 · f1,5NIT(�χ) + 1.15(±0.10) × 10−4 · f2,2sp3( �m)

+ 3.54(±1.34) × 10−16 · ∗f1,12CH (�α) − 3.51(±0.28) × 10−5 · ∗f3,2sp2(�χ)

−2.73(±1.35) × 10−14 · ∗f3,12sp (�χ) (24)

N = 34 R2 = 0.948 s = 0.180 Q2
LOO = 0.925 scv = 0.049

F(6,27) = 82.60 p < 1.00 × 10−14

log p = 3.48(±0.39) − 5.17(±0.53) × 10−2 · ssf2,1sp2(�r)
+ 1.31(±0.16) × 10−1 · ssf3,5sp2(�χ) + 2.11(±0.14) × 10−2 · ssf1,2(�r) (25)

− 0.39(±0.13) · ∗
ssf

1,2
sp3(�r) + 0.71(±0.23) · ∗

ssf
1,12
sp3 (�r)

− 2.10(±0.38) × 10−2 · ∗
ssf

3,3
NIT(�r)

N = 34 R2 = 0.951 s = 0.175 Q2
LOO = 0.933 scv = 0.044

F(6,27) = 87.99 p < 1.00 × 10−14

log p = 6.18(±0.66) + 1.57(±0.38) × 10−1 · dsf2,2NIT( �m)

− 1.67(±0.28) × 10−1 · dsf2,12NIT (�r) + 1.18(±0.19) × 10−1 · dsf3,6sp3( �m)

− 1.58(±0.46) × 10−1 · dsf1,1(�χ) + 5.10(±1.60) × 10−2 · ∗
dsf

2,12
HBD( �m)

+ 6.56(±3.18) × 10−3 · ∗
dsf

3,12
NIT (�r) − 1.95(±0.45) × 10−1 · ∗

dsf
2,5
NIT(�χ) (26)

N = 34 R2 = 0.946 s = 0.187 Q2
LOO = 0.933 scv = 0.052

F(7,26) = 65.45 p < 1.00 × 10−14

log k = 4.15(±0.38) + 4.75(±0.60) × 10−4 · f3,3AR(�χ)

+ 2.78(±0.52) × 10−4 · f1,2HET(�χ) − 3.82(±0.69) × 10−3 · f2,1R1 (�χ)

− 3.50(±0.36) × 10−9 · f3,7R3 ( �m) − 2.35(±0.28) × 10−3 · ∗f3,2AR(�α)

− 1.95(±0.93) × 10−5 · ∗f3,2sp3(�r) + 1.22(±0.18) × 10−3 · ∗f2,3C2C6(�α) (27)

N = 34 R2 = 0.950 s = 0.359 Q2
LOO = 0.918 scv = 0.222
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F(7,26) = 71.09 p < 1.00 × 10−14

log k = −2.09(±0.97) + 6.47(±0.60) × 10−2 · ssf3,1R3 ( �m)

−3.22(±0.42) × 10−1 · ssf2,9R3 (�α) + 2.70(±0.48) × 10−1 · ssf1,2sp2(�α)

+ 9.45(±0.80) × 10−1 · ∗
ssf

3,12
AR (�χ) − 1.54(±0.12) · ∗

ssf
3,4
AR(�α)

+ 1.92(±0.35) × 10−2 · ∗
ssf

1,10
R2 (�r) (28)

N = 34 R2 = 0.980 s = 0.221 Q2
LOO = 0.972 scv = 0.072

F(6,27) = 225.33 p < 1.00 × 10−14

log k = −49.4(±5.54) + 1.68(±0.15) × 10−1 · dsf1,12HET(�χ)

+ 2.12(±0.26) · dsf1,8NIT(�α) − 4.51(±0.95) · ssf1,3C6C7(�χ)

+ 6.11(±0.23) · ∗
ssf

3,2
AR(�χ) − 6.16(±0.65) · ∗

ssf
1,9
NIT( �m)

+ 5.97(±0.63) · ∗
ssf

1,10
NIT ( �m) − 4.54(±0.58) · ∗

ssf
2,8
C2C6(�χ) (29)

N = 34 R2 = 0.990 s = 0.164 Q2
LOO = 0.983 scv = 0.046

F(7,26) = 354.37 p < 1.00 × 10−14

These equations, obtained byusing non-stochastic, stochastic anddoubly-stochastic
3D-linear indices, explained (94.8, 95.1, 94.6%) and (95.0, 98.0, 99.0%) of the vari-
ance of log k and log p, respectively. These statistics are rather better than those
previously obtained (see Table 6 for more details) [102,118].

The LOO cross-validation procedure was used in order to assess the predictive abil-
ity of the developed models. Using this approach, models (24)–(29) yielded a Q2

LOO
of 0.948, 0.951, 0.946, 0.950, 0.980, and 0.990, respectively. These values of Q2

LOO
can be considered as proof of the high predictive ability of the models [129]. On the
other hand, the equations obtained with vertex- and edge-connectivity indices, topo-
graphic descriptors, and quantum chemical indices showed lower predictive abilities
(scv of 0.247, 0.176, and 0.370, respectively) than Eqs. (24) (scv = 0.049), (25) (scv
= 0.044) and (26) (scv = 0.052), achieved with the total and local 3D-based linear
indices, respectively, for description of the log p values (see Table 6 for more details).
Unfortunately, the authors [102] of the previous work did not report the results for
the LOO cross-validation experiment for log k. However, in Table 6 can be easily
observed that our obtained models, Eqs. (27)–(29), explain greater percentages of
the variance of the experimental log k values than the previously developed models,
showing decreases in the standard error between 23 and 76%with regard to the results
previously obtained by Estrada andMolina [102], using connectivity indices (both 2D
and 3D as well as edge- and vertex-based), total (global) spectral moments (sum of
the trace of the bond matrix), local (fragment) spectral moments (partial sum of the
trace of the bond matrix) and quantum chemical descriptors, respectively.

The equations predicting the octanol/water partition coefficient have a great rep-
resentation from local fragments related to hybridization and presence of aromatic
groups and heteroatoms. The doubly-stochastic MDmodels, as a particular case, have
an additional contribution of H-bond acceptor fragments. The atom properties mainly
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reflected in the equations are of electronic nature, associated with indices related to
interactions of short-to-medium range (p =1–6). Therefore, the models (24)–(26) are
capable of interpreting the distribution of furylethylenes in water and/or octanol as a
consequence of purely structural characteristics of the atoms in the molecule. On the
contrary, the models (27)–(29) that predict the specific rate constant of double-bond
addition take the local MDs representing the C2–C6 and C6–C7 bonds and frag-
ments. This is a logical result, if we take into account that these atoms are involved
in the exocyclic double bond of the 2-furylethylenes, and that these are the “target”
of the nucleophilic attack by the thiol (mercapto) group. Nevertheless, the total MDs
included in the attained models also indicate that the best description of the prop-
erties will be obtained by using a combination of local features of every molecular
structure included in the analysis. From this point of view, it is of great importance to
have atom level as well as total molecular indices in the molecular space, to obtain a
better description than using the local and global sets of MDs separately. The indices
that appear more frequently in the final equation are the short (p = 1–3) and long
range (p > 8). This shows that the interaction of electrons in atoms belonging to
the molecular environment of the exocyclic double bond, determines the chemical
reactivity of furylethylenes. Finally, the whole weighting-schedule [Mulliken elec-
tronegativity (χ), polarizability (α), atomic mass (m) and van der Waals volume (r)],
included in every model, showed the importance of the use of adequate combinations
of chemical-labels, in order to predict properties and activities of different nature.

3.11 Final conclusions

The application of the concepts of discrete mathematics and linear algebra to chem-
istry permitted us to define a new family of 3D-indices based in the concepts of linear
maps and functions on geometric-based matrices. Here, we defined new total and
local (atom, atom-type and group) MDs based on the extended and generalized 3D
(geometric) distance matrices. We also propose algebraic transformations on these
matrix representations to yield “stochastic”, “double-stochastic” and “mutual proba-
bilistic” distances of atom-pairs, fromwhich 3D (geometric)-linear indices are defined.
It was demonstrated that the novel 3D-linear indices codify structural information not
captured by other descriptor families in DRAGON software, possess similar-to-better
variability, according to Shannon’s entropy based variability analysis, than knownMD
calculating software packages (DRAGON, MOLd2, PADEL, MODESLAB, BLUE-
CAL, MOLCONNZ, POWER MV, and CDK), and are useful in the modeling of
physicochemical properties of molecules. Therefore, they can be considered as a rel-
evant tool to take into account in QSPR/QSAR and similarity/dissimilarity analysis.

3.12 Future outlook

Although the first results with these 3D-linear indices show promissory behavior,
additional studies with wider and more diverse databases are indispensable, in order to
evaluate the genuine possibilities of the proposedMDs in real QSAR/QSPR problems.
This will be the subject of future works. The steroid benchmark data set and eight
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datasets (aligned ligands plus data) compiled by Sutherland et al. [7] have gained
considerable acceptance as ideal for such extensiveQSPR/QSAR studies. It would also
be interesting to perform multiple non-parametric analyses for statistical significance
of the results obtained with 2D, 2.5 and 3D approaches.

We also intend to extend other previously defined 2D-TOMOCOMD indices like
quadratic and bilinear indices, whose effectiveness has been demonstrated in the litera-
ture, to codify 3D-molecular features and in the samemanner evaluate the contribution
of this “generalization” to the improvement of the correlation with molecular proper-
ties.

The MD computations in this study were performed with a preliminary version of
the TOMOCOMD-CARDD software. In the future better weighting schemes, atom-
types and fragments, plus an improved visual platform will be implemented. We
also intend to implement cut-offs on geometric distances, yielding yet other local
(or fragment-based) 3D-linear indices.

As mentioned in this report, the total (global) 3D-linear indices are expressed as
the sum of the local 3D-linear indices of the Z fragments, similar to the extended
Hückel MO method. In posterior works we will generalize this procedure through the
introduction of a series of metric, mean and statistical invariants.

The resulting indices will be later extended to define other geometric (3D) aspects
of molecules (for instance, using others metrics and several modified similarity coef-
ficients) and their applicability in inorganic molecules, chemical complexes, proteins
as well as DNA and RNA molecules will be studied. This phase will conclude with
the generalization of these indices in complex networks.
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